Telegram Group & Telegram Channel
REINFORCE - главное оружие против недифференцируемых задач

Все мы в жизни сталкиваемся с ситуациями, когда есть какая-то функция полезности J, зависящая от параметров Theta. Если можно посчитать производную, то мы в шоколаде - пользуемся градиентным спуском. Но что, если нет?

Рассмотрим такую абстракцию - параметры системы Theta влияют на распределение действий A, а результатом этих действий является J. Если распределение на A не полностью сконцентрировано в одной точке, то существует способ получить несмещённую оценку на градиент J по Theta!

Тут-то и появляется REINFORCE / Policy Gradient. На картинке вывод формулы, сразу же применённый к ситуации, когда действий несколько и они составляют траекторию - tau. Буквой pi обозначается распределение действий A - его и называют стратегией (policy).

Итак, метод в теории рабочий, но дальше он сталкивается с жестокой реальностью - дисперсия оценки градиента безумна, требуется слишком много данных. Во многом RL сводится к тому, чтобы найти способ уменьшить дисперсию оценки. Тот же самый PPO, обычно используемый для RLHF - всего лишь костыль, позволяющий переиспользовать данные, шагая весами Theta несколько раз.

Ситуация с REINFORCE напоминает одну щекотливую тему. Казалось бы - у нас есть окончательное решение недифференцируемого вопроса - просто собирай данные и шагай по этому градиенту. Строго доказано, что достаточно отмасштабировать алгоритм, дать ему больше ресурсов, и он обучит всё, что угодно.

Но реальность печальнее. Можно сколько угодно рассказывать, что масштабирование решит все фундаментальные проблемы, но в конце концов придётся улучшать и сам алгоритм. Готовым кинуть в меня Bitter Lesson-ом предлагаю почитать мой пост про него, там есть о том, как этот урок многие понимают неправильно. Через десятки лет все будут смеяться над тем, что люди хотели с помощью предсказания следующего токена и RL поверх человеческой разметки обучить интеллект, как сейчас над тем, что люди пытались вручную придумывать фичи для компьютерного зрения.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/162
Create:
Last Update:

REINFORCE - главное оружие против недифференцируемых задач

Все мы в жизни сталкиваемся с ситуациями, когда есть какая-то функция полезности J, зависящая от параметров Theta. Если можно посчитать производную, то мы в шоколаде - пользуемся градиентным спуском. Но что, если нет?

Рассмотрим такую абстракцию - параметры системы Theta влияют на распределение действий A, а результатом этих действий является J. Если распределение на A не полностью сконцентрировано в одной точке, то существует способ получить несмещённую оценку на градиент J по Theta!

Тут-то и появляется REINFORCE / Policy Gradient. На картинке вывод формулы, сразу же применённый к ситуации, когда действий несколько и они составляют траекторию - tau. Буквой pi обозначается распределение действий A - его и называют стратегией (policy).

Итак, метод в теории рабочий, но дальше он сталкивается с жестокой реальностью - дисперсия оценки градиента безумна, требуется слишком много данных. Во многом RL сводится к тому, чтобы найти способ уменьшить дисперсию оценки. Тот же самый PPO, обычно используемый для RLHF - всего лишь костыль, позволяющий переиспользовать данные, шагая весами Theta несколько раз.

Ситуация с REINFORCE напоминает одну щекотливую тему. Казалось бы - у нас есть окончательное решение недифференцируемого вопроса - просто собирай данные и шагай по этому градиенту. Строго доказано, что достаточно отмасштабировать алгоритм, дать ему больше ресурсов, и он обучит всё, что угодно.

Но реальность печальнее. Можно сколько угодно рассказывать, что масштабирование решит все фундаментальные проблемы, но в конце концов придётся улучшать и сам алгоритм. Готовым кинуть в меня Bitter Lesson-ом предлагаю почитать мой пост про него, там есть о том, как этот урок многие понимают неправильно. Через десятки лет все будут смеяться над тем, что люди хотели с помощью предсказания следующего токена и RL поверх человеческой разметки обучить интеллект, как сейчас над тем, что люди пытались вручную придумывать фичи для компьютерного зрения.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/162

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Telegram Auto-Delete Messages in Any Chat

Some messages aren’t supposed to last forever. There are some Telegram groups and conversations where it’s best if messages are automatically deleted in a day or a week. Here’s how to auto-delete messages in any Telegram chat. You can enable the auto-delete feature on a per-chat basis. It works for both one-on-one conversations and group chats. Previously, you needed to use the Secret Chat feature to automatically delete messages after a set time. At the time of writing, you can choose to automatically delete messages after a day or a week. Telegram starts the timer once they are sent, not after they are read. This won’t affect the messages that were sent before enabling the feature.

What is Secret Chats of Telegram

Secret Chats are one of the service’s additional security features; it allows messages to be sent with client-to-client encryption. This setup means that, unlike regular messages, these secret messages can only be accessed from the device’s that initiated and accepted the chat. Additionally, Telegram notes that secret chats leave no trace on the company’s services and offer a self-destruct timer.

Knowledge Accumulator from tw


Telegram Knowledge Accumulator
FROM USA